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Explicit solutions are derived for transition amplitudes associated with stimulated 
emission of  relativistic particles by external sources in spacetime. More precisely, 
exact expressions are obtained for transition amplitudes for any process where 
there are initially, at a given time, an arbitrary number of  particles localized in 
various regions of  space, prior to the switching on of an intervening source, and 
then, finally, at a later time when the intervening source ceases to operate, a 
given number of  particles are found to be localized in various regions of space. 
The analysis is given for massive particles of arbitrary integer and half-integer 
spins. The solutions are obtained by carrying out a unitarity expansion in 
configuration space, where particles travel between emitters and detectors in the 
presence of an intervening source. Considered as an application is the process: 
particle -> arbitrary number of  particles, where the latter particles emerge spatially 
with a cone. 

1. INTRODUCTION 

In spite of the many experiments [see, e.g., Franson and Potocki (1988), 
Grangier et al. (1986), and Grishaev et al. (1971), as well as the pioneering 
work of Taylor (1909) at the beginning of the century] giving a clear 
indication that not only massive particles but also single photons may be 
localized by detectors, almost no consistent and systematic studies seem to 
have been carded out to formulate the language in which actual computations 
of physical processes involving relativistic particles in quantum field theory 
in spacetime may be worked out. By the computations of physical processes, 
I mean the calculation of transition probabilities of collisions or decay 
processes where, say, the final products emerge spatially into various cones. 
Much of the earlier efforts [see Han et al. (1987) and Ali (1985) and the 
pioneering work of Newton and Wigner (1949)] on the localization problem 
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of relativistic particles dealt with so-called wave functions (as done in 
nonrelativistic theory) and position operators(I) and are so remote from 
the actual physical problem of the propagation of the particles in spacetime 
(cf. Feynman, 1949) between emitters and detectors that they offer no hope 
of treating particle-particle interacting theories in spacetime. Clearly, such 
a spacetime description of interacting theories seems possible only within 
the language of quantum field theory (Manoukian, 1988). The present paper 
gives a systematic study for the treatment of physical processes of relativistic 
particles in quantum field theory in a spacetime analysis of stimulated 
emission by external sources. Unfortunately, the transition from momentum 
space (cf. Manoukian, 1986a) to spacetime is far from obvious and the 
solutions for the latter are obtained by satisfying the severe completeness 
relation of a unitarity expansion in configuration space for the propagation 
of relativistic particles from an emitter to an intervening source and finally 
to a detector. (The latter reference, however, is indispensable for the present 
study.) The situation involving stimulated emission is clear. Initially, at a 
given time y0 we have a certain number of particles localized in various 
regions of space. At a later time, an external (intervening) source is switched 
on which may absorb some or all of these particles as they move, stimulating 
further emissions by the source. At a later time y0, after the intervening 
source ceases to operate, we again have a certain number of particles in 
various regions of space. Apart from the physical problem of stimulated 
emission in its own right, the intervening sources mimic various possible 
particle-particle interactions, and earlier methods (Manoukian, 1986b, 
1989) give the hope of developing a tool for computations of physical 
processes, such as transition probabilities, involving relativistic particles in 
quantum field theory in spacetime. 

This paper deals with stimulated emission of massive relativistic parti- 
cles of arbitrary spins in space time. Massless particles and particle-particle 
interactions (cf. Manoukian, 1986b, 1989) in spacetime will be the subject 
of a forthcoming report. Section 2 considers stimulated emission of spin-0 
particles in spacetime and derives the exact corresponding amplitudes. 
Section 3 generalizes the analysis of Section 2 first to spin-l/2 particles and 
then to arbitrary spins s > 0. In the final section (Section 4), some examples 
are given and an explicit spacetime computation of the transition probability 
for the decay process particle ~ arbitrary numer of particles is worked out, 
where the latter particles emerge spatially within a cone. By invoking the 
classic Araki-Haag-Ruelle theorem (Araki, 1962; Ruelle, 1962; Dollard 
and Velo, 1966) of estimates of smooth solutions of the Klein-Gordon 
equation, the decaying particles are seen to have, asymptotically in time, 
the direction of their momenta within the same cone, as expected on physical 
grounds. 
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2. STIMULATED EMISSION IN SPACETIME: 
SPIN-0 PARTICLES 

The starting point is Schwinger's vacuum-to-vacuum transition ampli- 
tude (Schwinger, 1970; Manoukian, 1984) for chargeless, spin-0 particles 
interacting with an external source K (x). The latter is given by the expression 

(0+[0_)K = exp ~ I ( d x ) ( d x ' ) K ( x ) A + ( x - x ' ) K ( x ' )  (1) 

where 

I d3 k elk(x_x, ) xo> X '~ 
A+(X--X')= i (2~.)32k o for (2) 

k ~ (k2+ m2) 1/2. We define the function of time-space y = (yO, y) 

I d3 k 
a(y) = (27r)3(2kO)U 2 e~kyK(k) (3) 

Then the vacuum persistence probability may be written as 

'(0+'0_)K[2 = e x p [ -  I d3yla(y),2]<.l (4) 

For the subsequent analysis, it is convenient to introduce a discrete 
(Schwinger, 1970; Manoukian, 1984) space variable notation (a lattice) by 
setting in the process 

ay = ( d3y)l/2 a(y) (5) 

y = (yO, y). Let {Yl ,  Y2 , .  �9 .} denote the set of the lattice points; then we may 
rewrite (4) as 

[(0+ [0-)r 12 = exp[ - ~  ]ay]2] (6) 

To obtain the transition amplitudes for stimulated emission we proceed as 
follows. We write (c.f. Manoukian, 1986a) K = K I + K 2 + K 3 ,  where the 
source K2 is switched on after the source K1 is switched off, and the source 
K3 is switched on after the source K2 is switched off. The source K2 is 
called an intervening source. After straightforward manipulations, we may 
rewrite (1) as 

(0+ 10_) K = (0+ I 0_)r3(0+ I 0_)r2(0+ 10_) K, exp iaa*ia 2 

• exp ia3*gia I exp ia2*ia 1 (7) 
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and 
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g/3~r ~2 a3*a2=~--y Uy (8 )  

Y 

a2*al= Z ay 2" ay 1 (9) 
Y 

a3,~a ,=y ,Z  _3,~ _1 (10) t~ty O y y , W y ,  
y y'  

gyy .=(d3yd3y ' ) ' /2 fd3x[A(y-x) t~- - -~A(x-y ' ) ]  (11) 

y = (yO, y), y , =  (yO, y,), y2>Yl;O 0 yO is chosen to be any time after the source 
K1 is switched off and before K2 is switched on, and yO is chosen to be any 
time after K2 is switched off and before K 3 is 'switched on; 

f d3 k . 
A ( y - x )  = (2r e 'k(y-:') (12) 

3/ox~176 ~ 

Upon expanding the exponentials in (7), one can rewrite the latter in detail 
as 

(i~3*',N1 :~3*~N z 

(0+ 10_) ~ = <0+ 10_) ~ E * '  "~' ~ ('"Y~ ~ 
(NI!) '/~ (N~!) 'n  

�9 ~ ~ ,  (~a~ )  " " ( o + 1 o _ ) "  
X ' "  "[ ' j  (M1!),/2 (M2!)1/2 (13) 

where 

2 (,ay2) �9 2 ~ N 2 - - m  2 
[ ' ] r~=(0+[0_)r~(Nl!N2!  MIIM2! �9 ) 1/2(iay')n~-'h 

. . . . .  ( N l - m l ) t  (N2-m2)!  

( ~ y l y ] )  roll ( ~ y l y ~ ) m l 2 , ' '  (dy2yl) m21 ( ~y2y~)  m22 
X .  �9 �9 

mu! m12! m21] m22! 
( ia2:~Ml=Eim~l  �9 2 *  M2--~ . im.  2 y~ j (tay~ ) , 

X "  o " 
(M, - Z, m,0! (M~- Z, rn,9! 

(14) 

and ~* stands for a summation over all nonegative integers: N;  
M;  N1, N 2 , . . . ;  M1, M 2 , . . . ;  such that NI+N2+ . . . .  N, M~+ 
ME+ . . . .  M,  as well as over all nonnegative integers: m; rn~; 
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m 2 , . . .  , r e a l ,  m 1 2 , .  �9 �9  m21, m 2 2 , . . .  ; satisfying the constraints 

Olll + m12 + . . . .  m l ,  0~< roll+ m21 + . .  .-<M~ 

m 2 1 +  m 2 2 +  . . . .  m 2 ,  0--< m 1 2 +  m22 + "  �9 . < M 2  (15) 

0 < - m~ < - N~ 

0 -  < m 2 -  < ?42 (16) 

m l + m 2 +  . . . .  m (17) 

Finally, y, (y2 ~ y~), Yl = o = (Yb Y~), where the times o o Y2, Yl have been introduced 
just below equation (11). A unitarity expansion may be also carried out for 
(0+]0_) K in configuration space as follows: 

(0+ ]0_) K = E ,  (0+ IN; N1, N2, �9 �9 �9 yO)~ 

•  N~, N2 . . . .  ,y~ M;  M~, M2, .  . . , yO)r~ 

x(M,  M, ,  M 2 , . . . ,  y~ (18) 

where yO>yO, (M,M~,M2, . . . , yOIO_)K,  denotes the amplitude that M 
particles are emitted by the source K~, M1 of which are found at lattice site 
yl,  Mz of  which are found at y2, and so on, at a time yO after the source 
K~ ceases to operate. Here 

(N;  N~, N a , . . . ,  y~ I M; M1, M= . . . .  , yO)r~ 

denotes the amplitude that M particles, M~ of which were at lattice site Yl, 
M2 of which were at y2, and so on, initially at time yO, move in the presence 
of the intervening source K2, and at a later time yO, after the latter source 
ceases to operate, we find N particles, N1 of which are at lattice site y~, 
N2 of which are at lattice site y2, and so on. The latter amplitude is the 
object of interest. It gives the amplitude for having finally in a process N 
particles after the intervening source is switched off when there are initially 
N particles before the intervening source is switched on. It is the amplitude 
of stimulated emission of particles. Finally, (0+ I N;  N~, N2 , . . . , y~  is 
the amplitude that N particles are absorbed by K 3 when at a time yO 
before the source K 3 was switched on, N1 of the particles were at lattice 
site Yl, N2 at lattice site Y2, and so on. ~ ,  stands for a summation 
over all nonnegative integers N;  N1, N 2 , . . .  ; M; M1, M 2 , . . .  ; such that 
N I +  N2+ . . . .  N, M~ + M2+ . . . .  M. 

By setting first K2 = 0, we have from (18) and (13) 

(M;M, ,M2, . . . , y~  K' (iay')M' (iay2)M2 " '"  (19) 
(M~ I)u2 (M:!),/2 
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(0+IN; N~, N2,... ,y~ (ia*~)N' ( ia*y% "'" (20) 
(N, t) 'n (N~!) ~n 

y~ = (yO, y~), where yO is arbitrary, falling in the time interval before the 
source K3 is switched on and after the source K~ is switched off. Quite 
generally, for K2 r 0, we may extract the expression for the stimulated 
emission transition amplitude from (13) and (18) to be 

( N ; N 1 , N z , . . . y ~ 1 7 6  K (21) 

for a given intervening source K, where [. ]K is defined in (14) upon setting 
K2 = K in the latter. Equation (21) is the main contribution of this paper. 
An explicit application wil be given in Section 4. 

3. G E N E R A L I Z A T I O N  TO ARBITRARY S P I N S  

We consider first spin-1/2 particles. To this end, the vacuum-to-vacuum 
transition amplitude in the presence of  external (anticommuting) sources 
rl(x), ~(x) may be written in the form 

(0+10_) n = exp i f (dx) (dx') r (22) 
d 

where 

I d3 p 
S + ( x - x ' ) = i  (2~)32pO(-yp+m)e ip(x-xO for x ~  '~ (23) 

pO = (p2+ m2)1/2. As in Section 2, we write rt = r}a + r/z+ r/a, to obtain for (22) 

(o+ to_) ~ = (o+ I o_)~(o+ I o_)~2(o+ Io_).1 

• exp iU*iV2 exp iU*3giU1 

x exp iU*ziU1 (24) 

where 

U* U2 = E f dax Ua(x, or, r)* U2(x, or, r) (25) 
tr, r 

U'U,  = • I d3x U2(x, or, r)*U,(x, or, r) (26) 
o- , r  

V~3gWl = erect, f d3y2 f d3yl W3(Y2, or, r),g~,(y2_Yl)Vl(Yl, ort, r') (27) 
r,r' 

g~,~,(Y2-Y~) = 8r~'8 -'" ~ ,6  (y2 -Yl)  (28) 
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and g [refer to equation (11)] 

g ( y 2 - y ~ )  = d3xA(y2-x) A(x-y~)  (29) 

yO > x o > yO 

f d3p (m~ 1/2 
U*(x, o', +) = j ~ \ ~ ]  ~(p)u(p, cr)e -~p~ (30) 

U(x, or, +) = j (2zr)2kpO] ft(p, o')rl(p)e 'px (31) 

f d3p (/'n~ 1/2 
U*(x, o', - )  = j ~ \pO] #(p, o')rl(-p)e -ipx (32) 

f (m_ 1,2 
U(x, o,, - ) =  j (2~rp)3kpO ] r cr)e ipx (33) 

where r = + corresponds to particle, antiparticle, respectively, o-= • is 
a mere labeling, corresponding to spin values assigned to the spinors u (p, or), 
v(p, o'). Note that ( U(x, or, r)) 2 = O. 

We introduce the notation a = (yO, Y, o-, r), a '  = (Yl, Y,~ o', r), and a con- 
venient discrete notation for the space variable (a lattice), and introduce 
in the process the notation 

Us = (d3y) 1/2 U(y ~ y, or, r) (34) 

We consider only connected processes, where all the particles initially 
present are detected (absorbed) by the intervening source r/2, deleting all 
those processes where some or all the initial particles just move from the 
emitter to the detector without being detected by the intervening source. A 
similar analysis as in Section 2 then readily shows [see also especially 
Manoukian (1986a)] 

(N;  N~, N2,. �9 �9 y~ M; M1, M2 . . . . .  yO), 

= (iU~1)N'(iU~2) N2.'" <0+10 ) MI (35) 

for given sources ~7, r Note the ordering of the U's in (35), and also note 
that N ,  M~ -- 0 or 1. 

For arbitrary spins s > 0, we introduce a symmetric source (Schwinger, 
1970; see also Bargmann and Wigner, 1948) ~7~ . . .~ (x)  having 2s spinor 
indices, where {~7(x), ~7(x')}--0 for s half-integer and [~7(x), ~7(x')] = 0 for 
s integer. The vacuum-to-vacuum transition amplitude may be written in 
the compact form (Schwinger, 1970) 

(0+10_) ~ = exp i f (dx) (dx') r ) (36) 
J 
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f d3p . , 2s 
S + ( x - x ' ) = i  (27r)32p ~ 1~ [ - y p + r n ] ~  f o r x ~  '~ (37) 

By considering the causal arrangement r /= ~Ta+ r/2+ r/3 and repeating the 
analysis in Section 2, we arrive at the transition amplitudes for arbitrary 
spins: For s integer, the latter are given in (21) and (14), where the ay are 
replaced by U(y, A, r) and the y~, Yl are replaced, respectively, by a = 
(yO, y, A, r), a ' = ( y ~  r), A = - s ,  - s + l , . . . , - 1 ,  0, 1 , . . . , s .  For s half- 
integer, the latter (connected) amplitude is given in (35), with U~ as defined 
below. The U(y, A, r) are given by 

f a3p F(zm)='ll/= U(y, A, +) = ~ a~(P)71(P) eipy (38) 

I d 3 p  f(2~)='ll'~ 
U ( y ,  A, - )  = ~ L-%-6-po j n(-p)~.(p) e 'py (39) 

and similar expressions for U(y, A, +)*, U(y, A,-)*.  For s half-integer, 
( U(y, A, r)) 2 = 0. 

4. EXAMPLES 

For the connected process M1, M2,...--> N1, ArE . . . .  , where N~+ 
N2 + . . . .  N, M1 + M2 + . . . .  M, in the presence of an intervening source 
K(x),  the corresponding transition amplitude is readily read from (21), 
(14) to be 

(N;  N1, N 2 , . . . ,  yO] M; M1, M 2 , . . . ,  yO)ff 

(iay~)N~ (iay~)N2 "" <0+ 0 \K (iay*) M' (ia*x2) M2 (40) 
=(N~!) '/2 (N2!) 1/2" - ,  (Ml!)l/2 (M2!) 1/2"'" 

where a r is defined in (3), (5), since in this case m . ,  m l e , . . . ,  rn2~, 
m22,. �9 �9 = 0, and hence m~, m2,. �9 �9 = 0. Of particular interest is the decay 
process particle--> arbitrary number of particles. The latter amplitude, with 
the particles at specified positions, is 

(iay~) N' (iay2) N2 K . .  
. . . .  ]0_) (lays) (N,t),/2 (N2!),/2 (0+ (41) 

and without loss of any generality the decaying particle is chosen to be 
initially at time-space coordinate (yO, Y0. The corresponding transition 
probability for the decay process where the particles (final products) emerge 
into a cone C: x=( r ,  O, ~b), O-<r<oo, Oo-<O-<Oo+AO, ~bo-<~b---~bo+A4~, 
where 0o, ~bo are some fixed values, is then, from (41), 

y~ (lax'12)"i (laxY)"~...  t<0+10_)"121ay, I 2 (42) 
N=0 (hi+n2+ . . . .  N) nl  ! n2! 
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where xi = (y2 ~ x~), and xl, x2 , . . ,  are space points lying within the cone 
C. Hence we may rewrite (42) as 

la 2 laxl2) " 
E I(o+1o_> KI 2 

N=o N !  

for the transition probability associated with the decay process in question. 
Note that the integral 

fcd3X [a(x)l 2 

is time (yO) dependent. We are interested in the limit yO_>~, when the 
emerging particles, within the cone, are far from the "interaction" region. 
We may then invoke the classic Araki-Haag-Ruelle theorem (Araki, 1962; 
Ruelle, 1962; Dollard and Velo, 1966; see also Dollard, 1969; Manoukian, 
1988) to write for the decay process 

y~Lm d3yl ,a(yl)[ 2 e x p [ -  fR ~ d3y {a(y)[ 2] exp[  fc d3x [a(x){2] 

=d3ylla(yl)12exp[_fR3d3yla(y)]a]exp[f c d3k Ig(k)12] (44) 
(2,n-)32k ~ 

where 

K(k) = f (dx) K(x)e -~z', k ~ = (k2-F m2) 1/2 (45) 

justifying rigorously the physically expected result that the particles emerg- 
ing within the cone have their momenta directed within the same cone! 
Note that for the k integration in (44), C: k=(Ikl, 
0o -< 0 --- 0o + A 0, ~bo <- ~b --< ~bo + A ~b. Other processes are similarly studied. 
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